Utilizing the activation mechanism of serine proteases to engineer hepatocyte growth factor into a Met antagonist.

نویسندگان

  • Daniel Kirchhofer
  • Michael T Lipari
  • Lydia Santell
  • Karen L Billeci
  • Henry R Maun
  • Wendy N Sandoval
  • Paul Moran
  • John Ridgway
  • Charles Eigenbrot
  • Robert A Lazarus
چکیده

Hepatocyte growth factor (HGF), the ligand for the receptor tyrosine kinase Met, is secreted as single chain pro-HGF that lacks signaling activity. Pro-HGF acquires functional competence upon cleavage between R494 and V495, generating a disulfide-linked alpha/beta-heterodimer, where the beta-chain of HGF (HGF beta) has a serine protease fold that lacks enzymatic activity. We show that, like serine proteases, insertion of the newly formed N terminus in the beta-chain is critical for activity, here by allosterically stabilizing interactions with Met. The HGF beta crystal structure shows that V495 inserts into the "activation pocket" near the Met binding site where the positively charged N terminus forms a salt bridge with the negatively charged D672, and the V495 side chain has hydrophobic interactions with main- and side-chain residues. Full-length two-chain HGF mutants designed to interrupt these interactions (D672N, V495G, V495A, G498I, and G498V) displayed <10% activity in Met receptor phosphorylation, cell migration, and proliferation assays. Impaired signaling of full-length mutants correlated with >50-fold decreases in Met binding of the low-affinity HGF beta domain alone bearing the same mutations and further correlated with impaired N-terminal insertion. Because high-affinity binding resides in the HGF alpha-chain, full-length mutants maintained normal Met binding and efficiently inhibited HGF-mediated Met activation. Conversion of HGF from agonist to antagonist was achieved by as little as removal of two methyl groups (V495A) or a single charge (D672N). Thus, although serine proteases and HGF have quite distinct functions in proteolysis and Met signal transduction, respectively, they share a similar activation mechanism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple myeloma cells catalyze hepatocyte growth factor (HGF) activation by secreting the serine protease HGF-activator.

Multiple myeloma (MM) is a common hematologic neoplasm consisting of malignant plasma cells, which expand in the bone marrow. A potential key signal in the evolution of MM is hepatocyte growth factor (HGF), which acts as a potent paracrine and/or autocrine growth factor and survival factor for MM cells. Proteolytic conversion of HGF into its active form is a critical limiting step in HGF/MET si...

متن کامل

Structural basis of hepatocyte growth factor/scatter factor and MET signalling.

The polypeptide growth factor, hepatocyte growth factor/scatter factor (HGF/SF), shares the multidomain structure and proteolytic mechanism of activation of plasminogen and other complex serine proteinases. HGF/SF, however, has no enzymatic activity. Instead, it controls the growth, morphogenesis, or migration of epithelial, endothelial, and muscle progenitor cells through the receptor tyrosine...

متن کامل

Mechanisms of Hepatocyte Growth Factor Activation in Cancer Tissues

Hepatocyte growth factor/scatter factor (HGF/SF) plays critical roles in cancer progression through its specific receptor, MET. HGF/SF is usually synthesized and secreted as an inactive proform (pro-HGF/SF) by stromal cells, such as fibroblasts. Several serine proteases are reported to convert pro-HGF/SF to mature HGF/SF and among these, HGF activator (HGFA) and matriptase are the most potent a...

متن کامل

Roles and regulation of membrane-associated serine proteases.

Pericellular proteolytic activity affects many aspects of cellular behaviour, via mechanisms involving processing of the extracellular matrix, growth factors and receptors. The serine proteases have exquisitely sensitive regulatory mechanisms in this setting, involving both receptor-bound and transmembrane proteases. Receptor-bound proteases are exemplified by the uPA (urokinase plasminogen act...

متن کامل

Insights into the mechanism of organ-specific cancer metastasis.

SUMMARY Lucas and colleagues nominate transmembrane serine protease type II (TMPRSS2) as an important player in the initiation of epithelial-mesenchymal transition (EMT) in prostate cancer. Cancer cells maintain androgen receptor-regulated cytoplasmic TMPRSS2 expression, which facilitates EMT invasion and metastasis in model systems through hepatocyte growth factor and c-MET signaling. In addit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 104 13  شماره 

صفحات  -

تاریخ انتشار 2007